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Abstract. Based on analysis of Pawlak’s rough set model in the view of single equivalence relation and the theory of fuzzy set,
associated with multi-granulation rough set models proposed by Qian, two types of new rough set models are constructed, which
are multi-granulation fuzzy rough sets. It follows the research on the properties of the lower and upper approximations of the
new multi-granulation fuzzy rough set models. Then it can be found that the Pawlak rough set model, fuzzy rough set model and
multi-granulation rough set models are special cases of the new one from the perspective of the considered concepts and granular
computing. The notion of rough measure and (α, β)-rough measure which are used to measure uncertainty in multi-granulation
fuzzy rough sets are introduced and some basic properties of the measures are examined. The construction of the multi-granulation
fuzzy rough set model is a meaningful contribution in the view of the generalization of the classical rough set model.
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1. Introduction14

Rough set theory, proposed by Pawlak [15–17], has15

become a well-established mechanism for uncertainty16

management in a wide variety of applications related17

to artificial intelligence [3, 4, 12]. The theory has been18

applied successfully in the fields of pattern recogni-19

tion, medical diagnosis, data mining, conflict analysis,20

algebra [1, 18, 24], which are related to an amount of21

imprecise, vague and uncertain information. In recent22

years, the rough set theory has generated a great deal23

of interest among more and more researchers. The gen-24

eralization of the rough set model is one of the most25

important research directions.26

On the one hand, rough set theory is generalized by27

combining with other theories that deal with uncertain28

knowledge such as fuzzy set. It has been acknowledged29

by different studies that fuzzy set theory and rough set30

theory are complementary in terms of handling differ-31

ent kinds of uncertainty. The fuzzy set theory deals with32
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P.R. China; School of Management, Xi’an Jiaotong University, Xi’an,
700049 P.R. China. E-mail: chxwh@gmail.com.

possibilistic uncertainty, connected with imprecision of 33

states, perceptions and preferences [5]. Rough sets, in 34

turn, deal with uncertainty following from ambiguity 35

of information [15, 16]. The two types of uncertainty 36

can be encountered together in real-life problems. For 37

this reason, many approaches have been proposed to 38

combine fuzzy set theory with rough set theory. Dubois 39

and Prade proposed concepts of rough fuzzy sets and 40

fuzzy rough sets based on approximations of fuzzy sets 41

by crisp approximations spaces, and crisp sets by fuzzy 42

approximation spaces, respectively [6]. A fuzzy rough 43

set is a pair of fuzzy sets resulting from the approxima- 44

tion of a fuzzy set in a crisp approximation space, and 45

a rough fuzzy set is a pair of fuzzy sets resulting from 46

the approximation of a crisp set in a fuzzy approxima- 47

tion space. Besides, some other researches about fuzzy 48

rough set and rough fuzzy set from other directions have 49

been discussed [2, 7–9, 13, 23, 25, 26, 32, 35, 36]. 50

On the other hand, rough set theory was discussed 51

with the point view of granular computing. Informa- 52

tion granules refer to pieces, classes and groups divided 53

in accordance with characteristics and performances of 54

complex information in the process of human under- 55

standing, reasoning and decision-making. Zadeh firstly 56
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proposed the concept of granular computing and dis-57

cussed issues of fuzzy information granulation in 197958

[39]. Then the basic idea of information granulation has59

been applied to many fields including rough set [15, 16].60

In 1985, Hobbs proposed the concept of granularity61

[10]. And granular computing played a more and more62

important role gradually in soft computing, knowledge63

discovery, data mining and many excellent results were64

achieved [14, 21, 22, 27–31, 33, 34, 37, 38]. In the point65

view of granulation computing, the classical Pawlak66

rough set is based on a single granulation induced from67

an indiscernibility relation. And an equivalence rela-68

tion on the universe can be regarded as a granulation.69

For convenience, single granulation fuzzy rough set,70

denoted by SGFRS. This approach to describing a con-71

cept is mainly based on the following assumption:72

If RA and RB are two relations induced by the73

attributes subsets A and B and X ⊆ U is a target74

concept, then the rough set of X is derived from the75

quotient set U/(RA ∪ RB) = {[x]RA
∩ [x]RB |[x]RA

∈76

U/RA, [x]RB ∈ U/RB, [x]RA
∩ [x]RB /= ∅}, which77

suggests that we can perform an intersection operation78

between [x]RA
and [x]RB and the target concept is79

approximately described by using the quotient set80

U/(RA ∪ RB). Then the target concept is described by81

a finer granulation (partitions) formed through com-82

bining two known granulations (partitions) induced83

from two-attribute subsets. However, the combination84

that generates a much finer granulation and more85

knowledge destroys the original granulation structure.86

In fact, the above assumption cannot always be satis-87

fied or required generally. In some data analysis issues,88

for the same object, there is a contradiction or inconsis-89

tent relationship between its values under one attribute90

set A and those under another attribute set B. In other91

words, we can not perform the intersection operations92

between their quotient sets and the target concept cannot93

be approximated by using U/(RA ∪ RB). For the solu-94

tion of the above contradition, Qian, Xu and M. Khan95

extended the Pawlak rough set to multi-granulation96

rough set models in which the approximation opera-97

tors were defined by multiple equivalence relations on98

the universe [11, 19–21, 29, 30].99

Associated fuzzy rough set with granulation com-100

puting, we will propose two types of multi-granulation101

fuzzy rough set models. The main objective of this paper102

is to extend Pawlak’s rough set model determined by103

single binary relation to multi-granulation fuzzy rough104

sets in which set approximations are defined by mul-105

tiple equivalence relations. The rest of this paper is106

organized as follows. Some preliminary concepts of107

Pawlak’s rough set theory and fuzzy rough sets the- 108

ory are proposed [5] in Section 2. In Section 3, based 109

on multiple ordinary equivalence relations, two types of 110

multi-granulation fuzzy rough approximation operators 111

of a fuzzy concept in a fuzzy target information system, 112

are constructed and a number of important properties of 113

them are discussed in detail. Then it follows the com- 114

parison and relations among the properties of the two 115

types of multi-granulation fuzzy rough sets and single- 116

granulation fuzzy rough set in Section 4. In Section 117

5, a notion of rough measure and rough measure with 118

respect to parameters α and β of the multi-granulation 119

fuzzy rough sets are defined and illustrative examples 120

are used to show its rationality and essence. And finally, 121

the paper is concluded by a summary and outlook for 122

further research in Section 6. 123

2. Preliminaries 124

In this section, we will first review some basic con- 125

cepts and notions in the theory of Pawlak rough set 126

and fuzzy rough set and the models of the multi- 127

granulation rough set. More details can be seen in 128

references [15, 40]. 129

2.1. Pawlak rough set 130

The notion of information system provides a conve- 131

nient tool for the representation of objects in terms of 132

their attribute values. 133

An information system is an ordered triple I = 134

(U, AT, F ), where 135

U = {u1, u2, ..., un} is a non-empty finite set of 136

objects; 137

AT = {a1, a2, ..., am} is a non-empty finite set of 138

attributes; 139

F = {fj | j ≤ m} is a set of relationship between U 140

and AT , where fj : U → Vj(j ≤ m), Vj is the domain 141

of attribute aj and m is the number of the attributes. 142

Let I = (U, AT, F ) be an information system. For
A ⊆ AT , denote

RA = {(x, y) | fj(x) = fj(y), ∀aj ∈ A}
then RA is reflexive, symmetric and transitive. So it is 143

an equivalence relation on U. 144

Moreover, denote 145

[x]A = {x | (x, y) ∈ RA}, 146

U/A = {[x]A|∀x ∈ U}, 147
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then [x]A is called the equivalence class of x, and the148

quotient set U/A is called the equivalence class set of149

U.150

For any subset X ⊆ U and A ⊆ AT in the informa-
tion system I = (U, AT, F ), the Pawlak’s lower and
upper approximations of X with respect to equivalence
relation RA could be defined as following.

RA(X) = {x | [x]A ⊆ X},
RA(X) = {x | [x]A ∩ X /= ∅},

The set BnA(X) = RA(X) − RA(X) is called the151

boundary of X.152

To measure the imprecision and roughness of a rough
set, Pawlak defined the rough measure of X /= ∅ as

ρA(X) = 1 − |RA(X)|
|RA(X)| .

2.2. Fuzzy rough set153

Let U is still a finite and non-empty set called uni-154

verse. A fuzzy set X is a mapping from U into the unit155

interval [0, 1], µ : U → [0, 1], where each µ(x) is156

the membership degree of x in X. The set of all the157

fuzzy sets defined on U is denoted by F (U).158

Let U be the universe, R be an equivalence relation.
For a fuzzy set X ∈ F (U), if denote

R(X)(x) = ∧{A(y)|y ∈ [x]R},
R(X)(x) = ∨{A(y)|y ∈ [x]R},

then R(X) and R(X) are called the lower and upper159

approximation of the fuzzy set X with respect to the160

relation R, where “ ∧ " means “min" and “ ∨ " means161

“max".X is a fuzzy definable set if and only ifX satisfies162

R(X) = R(X). Otherwise, X is called a fuzzy rough set.163

Let I = (U, AT, F ) be an information system. F =
{fj | j ≤ n} is a set of relationship between U and AT .
Dj : U → [0, 1](j ≤ r), r is the number of the decision
attributes. If denote

D = {Dj | j ≤ r},
then (U, AT, F, D) is a fuzzy target information system.164

In a fuzzy target information system, we can define the165

approximation operators with respect to the decision166

attribute D similarly.167

Let U be the universe, R be an equivalence relation,168

X, Y ∈ F (U). The fuzzy lower and upper approxi-169

mation with respect to relation R have the following170

properties.171

(1) R(X) ⊆ X ⊆ R(X). 172

(2) R(X ∩ Y ) = R(X) ∩ R(Y ), R(X ∪ Y ) = R(X) ∪ 173

R(Y ). 174

(3) R(X) =∼ R(∼ X), R(X) =∼ R(∼ X). 175

(4) R(X ∪ Y ) ⊇ R(X) ∪ R(Y ), R(X ∩ Y ) ⊆ R(X) ∩ 176

R(Y ). 177

(5) R(R(X)) = R(R(X)) = R(X). 178

(6) R(R(X)) = R(R(X)) = R(X). 179

(7) R(U) = U, R(∅) = ∅. 180

(8) X ⊆ Y ⇒ R(X) ⊆ R(Y ) and R(X) ⊆ R(Y ). 181

To measure the imprecision and roughness of a fuzzy
rough set, the rough measure of X /= ∅ is defined as

ρA(X) = 1 − |RA(X)|
|RA(X)| .

where |RA(X)| = ∑
x∈U

RA(X)(x) and |RA(X)| = ∑
x∈U

182

RA(X)(x). If RA(X) = 0, we prescribe ρA(X) = 0. 183

What is more, for any 0 < β ≤ α ≤ 1, the α, β rough
measure of fuzzy set is defined as

ρA(X)α,β = 1 − |RA(X)α|
|RA(X)β| .

where |RA(X)α| is the cardinality of the α-cut set of 184

RA(X), and |RA(X)β| is the cardinality of the β-cut set 185

of RA(X). 186

More details about the properties of above measures 187

can be found in reference [40]. 188

2.3. Multi-granulation rough sets 189

For simplicity, we just recall the models of multi- 190

granulation rough sets and details can be seen in 191

references [20, 21, 29]. 192

Let I = (U, AT, F ) be an information system, Ai ⊆ 193

AT, 1 ≤ i ≤ m, m is the number of the considered 194

attribute sets. The optimistic lower and upper approxi- 195

mations of the set X ∈ U with respect to Ai ⊆ AT, (1 ≤ 196

i ≤ m) are 197

OR m∑
i=1

Ai

(X) = {x |
m∨

i=1

[x]Ai ⊆ X, 1 ≤ i ≤ m}, 198

OR m∑
i=1

Ai

(X) = {x |
m∧

i=1

[x]Ai ∩ X /= ∅, 1 ≤ i ≤ m}, 199

where [x]Ai = {y|(x, y) ∈ RAi}, and RAi is an equiva- 200

lent relation with respect to the attributes set Ai. 201
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Table 1

U Transportation Population density Consumption level

x1 Dood Big High
x2 Dood Big Midium
x3 Bad Small Low
x4 Bad Small High
x5 Dood Small High
x6 Common Big High

Moreover, OR m∑
i=1

Ai

(X) /= OR m∑
i=1

Ai

(X), we say that202

X is the optimistic rough set with respect to multiple203

equivalence relations or multiple granulations. Other-204

wise, we say that X is the optimistic definable set with205

respect to multiple equivalence relations or multiple206

granulations.207

Let I = (U, AT, F ) be an information system, Ai ⊆208

AT, 1 ≤ i ≤ m, m is the number of the considered209

attribute sets. The pessimistic lower and upper approxi-210

mations of the set X ∈ U with respect to Ai ⊆ AT, 1 ≤211

i ≤ m are212

PR m∑
i=1

Ai

(X) = {x |
m∧

i=1

[x]Ai ⊆ X, 1 ≤ i ≤ m},213

PR m∑
i=1

Ai

(X) = {x |
m∨

i=1

[x]Ai ∩ X /= ∅, 1 ≤ i ≤ m},214

Moreover, PR m∑
i=1

Ai

(X) /= PR m∑
i=1

Ai

(X), we say that X is215

the pessimistic rough set with respect to multiple equiv-216

alence relations or multiple granulations. Otherwise, we217

say that X is pessimistic definable set with respect to218

multiple equivalence relations or multiple granulations.219

Example 2.1. An information system about220

six cities’ condition are given in table 1. The221

universe U = {x1, x2, x3, x4, x5, x6} stands for222

six cities, the set of condition attributes AT =223

{Transportation, Population density, Consumption224

level}. Now, denote A1 =225

{Transportation, Population density, } and226

A2 = {Population density, Consumption level}. Let227

X = {x2, x4, x5, x6}.228

By computing, we have that

U/A1 = {{x1, x2}, {x3, x4}, {x5}, {x6}}
U/A2 = {{x1, x6}, {x2}, {x3}, {x4, x5}}

According to the above equivalence class, we can
obtain the lower and upper approximation of X based
on optimistic multi-granulation rough sets model as
follows:

ORA1+A2 (X) = {x2, x4, x5, x6}
ORA1+A2 (X) = {x1, x2, x4, x5, x6}

If we compute the lower and upper approximation of X

based on the pessimistic multi-granulation rough sets
model, the result can been seen as follows:

PRA1+A2 (X) = {x5}
PRA1+A2 (X) = U

Form the two types of rough sets models, we can see 229

that the optimistic boundary region is more small and 230

the pessmistic boundary region is more big compared 231

the classical rough sets model. In some cases, it can 232

deal with uncertain problems easily. 233

3. Optimistic and pessimistic multi-granulation 234

fuzzy rough sets 235

In this section, we will research about multi- 236

granulation fuzzy rough sets which are the problems 237

of the rough approximations of a fuzzy set based on 238

multiple classical equivalence relations. 239

3.1. The optimistic multi-granulation fuzzy rough 240

set 241

First, the optimistic two-granulation fuzzy rough set 242

(in brief OTGFRS) of a fuzzy set is defined. 243

Definition 3.1. Let I = (U, AT, F ) be an informa-
tion system, A, B ⊆ AT . For the fuzzy set X ∈ F (U),
denote

ORA+B(X)(x) ={∧{X(y) | y ∈ [x]A}}∨
{∧{X(y) | y ∈ [x]B}},

ORA+B(X)(x) ={∨{X(y) | y ∈ [x]A}}∧
{∨{X(y) | y ∈ [x]B}},

where “ ∨ " means “max” and “ ∧ " means “min”, then
ORA+B(X) and ORA+B(X) are respectively called the
optimistic two-granulation lower approximation and
upper approximation of X with respect to the subsets
of attributes A and B. X is a two-granulation fuzzy
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rough set if and only if ORA+B(X) /= ORA+B(X). Oth-
erwise, X is a two-granulation fuzzy definable set. The
boundary of the fuzzy rough set X is defined as

BndO
RA+B

(X) = ORA+B(X) ∩ (∼ ORA+B(X)).

From the above definition, it can be seen that the approx-244

imations in the OTGFRS are defined through using245

the equivalence classes induced by multiple indepen-246

dent equivalence relations, whereas the standard fuzzy247

rough approximations are represented via those derived248

by only one equivalence relation. In fact, the OTGFRS249

will be degenerated into a fuzzy rough set when A = B.250

That is to say, the fuzzy rough set model is a special251

instance of the OTGFRS. What’s more, the OTGFRS252

will be degenerated into Pawlak rough set if A = B and253

the considered concept X is a crisp set.254

In the following, we employ an example to illustrate255

the above concepts.256

Example 3.1. A fuzzy target information system about257

ten colledge students’ performance are given in Table 1.258

The universe U = {x1, x2, · · · , x10} which consists of259

ten students in a colledge; the set of condition attributes260

AT = {CP, RP, MP} , in which CP means “Course261

Performance”, RP means “Research Performance”, and262

MP means “Morality Performance”, and the bigger263

the value of the condition attribute is, the better the264

students’ performance is; the set of decision attribute265

D = {CA} in which CA represents a fuzzy concept and266

means “Student’s Comprehensive Accomplishment is267

good”, and the value of the decision attribute is the268

membership degree of “good”. We evaluate the stu-269

dents’ comprehensive performance by the following270

cases:271

Case 1: we evaluate the student by “Course Perfor-272

mance” and “Research Performance”, that is,273

the first granulation is A = {CP, RP};274

Case 2: we evaluate the student by “Course Perfor-275

mance” and “Morality Performance”, that is,276

the second granulation is B = {CP, MP}.277

And the equivalence relation is defined as RA(RB) =278

{(xi, xj) | fl(xi) = fl(xj), al ∈ A(B)} which means the279

students’ comprehensive accomplishments is definitely280

indiscernible. Then under the equivalence relation281

RA(RB), the students whose performance are the same282

belong to the same classification. We consider the opti-283

mistic two-granulation lower and upper approximation284

of D with respect to A and B. The optimistic two-285

granulation lower approximation here represents that286

the students’ comprehensive performance is good at287

Table 2

U CP RP MP CA

x1 2 1 3 0.6
x2 3 2 1 0.7
x3 2 1 3 0.7
x4 2 2 3 0.9
x5 1 1 4 0.5
x6 1 1 2 0.4
x7 3 2 1 0.7
x8 1 1 4 0.7
x9 2 1 3 0.8
x10 3 2 1 0.7

least at some degree if we consider either case, while 288

the optimistic two-granulation upper approximation 289

here represents that the students’ comprehensive per- 290

formance is good at most at another bigger degree if we 291

consider both two cases.From the table, we can easily 292

obtain
293

U/A = {{x1, x3, x9}, {x2, x7, x10}, {x4}, 294

{x5, x6, x8}}, 295

U/B = {{x1, x3, x4, x9}, {x2, x7, x10}, 296

{x5, x6, x8}, {x6}}, 297

U/(A ∪ B) = {{x1, x3, x9}, {x2, x7, x10}, {x4}, 298

{x5, x8}, {x6}}. 299

Then the single granulation lower and upper approxi- 300

mation of D are 301

RA(D) = (0.6, 0.7, 0.6, 0.9, 0.4, 0.4, 0.7, 302

0.4, 0.6, 0.7), 303

RA(D) = (0.8, 0.7, 0.8, 0.9, 0.7, 0.7, 0.7, 304

0.7, 0.6, 0.7); 305

RB(D) = (0.6, 0.7, 0.6, 0.6, 0.5, 0.4, 0.7, 306

0.5, 0.6, 0.7), 307

RB(D) = (0.9, 0.7, 0.9, 0.9, 0.7, 0.4, 0.7, 308

0.8, 0.9, 0.7); 309

RA∪B(D) = (0.6, 0.7, 0.6, 0.9, 0.5, 0.4, 0.7, 310

0.5, 0.6, 0.7), 311

RA∪B(D) = (0.8, 0.7, 0.8, 0.9, 0.7, 0.4, 0.7, 312

0.7, 0.8, 0.7); 313

RA(D) ∪ RB(D) = (0.6, 0.7, 0.6, 0.9, 0.5, 0.4, 0.7, 314

0.5, 0.6, 0.7), 315

RA(D) ∩ RB(D) = (0.8, 0.7, 0.8, 0.9, 0.7, 0.4, 316

0.7, 0.7, 0.8, 0.7). 317
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From the Definition 3.1, we can compute optimistic318

two-granulation lower and upper approximation of D is319

ORA+B(D) = (0.6, 0.7, 0.6, 0.9, 0.5, 0.4, 0.7,320

0.5, 0.6, 0.7),321

ORA+B(D) = (0.8, 0.7, 0.8, 0.9, 0.7, 0.4, 0.7,322

0.7, 0.8, 0.7).323

We can find that the ten students are good at least at the324

degree 0.6, 0.7, 0.6, 0.9, 0.5, 0.4, 0.7, 0.5, 0.6, 0.7,325

respectively, if we only evaluate the students by either A326

or B; and the ten students are good at most at the degree327

0.8, 0.7, 0.8, 0.9, 0.7, 0.4, 0.7, 0.7, 0.8, 0.7, respec-328

tively, if we evaluate the students by both A and B.329

Obviously, the following can be found330

ORA+B(D) = RA(D) ∪ RB(D),331

ORA+B(D) = RA(D) ∩ RB(D),332

ORA+B(D) ⊆ RA∪B(D) ⊆ D ⊆ RA∪B(D)333

⊆ ORA+B(D).334

Just from Definition 3.1, we can obtain some properties335

of the OGFRS in an information system.336

Proposition 3.1. Let I = (U, AT, F ) be an information337

system, B, A ⊆ AT and X ∈ F (U). Then the following338

properties hold.339

(1) ORA+B(X) ⊆ X,340

(2) ORA+B(X) ⊇ X;341

(3) ORA+B(∼ X) =∼ ORA+B(X),342

(4) ORA+B(∼ X) =∼ ORA+B(X);343

(5) ORA+B(U) = ORA+B(U) = U,344

(6) ORA+B(∅) = ORA+B(∅) = ∅.345

Proof. It is obvious that all terms hold when A = B,346

since OGFRS degenerates into Pawlak fuzzy rough set.347

When A /= B, the proposition can be proved as follows.348

(1) For any x ∈ U and A, B ⊆ AT , since RA(X) ⊆349

X, we know350

∧{X(y) | y ∈ [x]A} ≤ X(y)

and
∧{X(y) | y ∈ [x]B} ≤ X(y)

Therefore,

{∧{X(y) | y ∈ [x]A}} ∨ {∧{X(y) | y ∈ [x]B}} ≤ X(y).

i.e., ORA+B(X) ⊆ X.

(2) For any x ∈ U and A, B ⊆ AT , since X ⊆ 351

RA(X), we know 352

X(y) ≤ ∨{X(y) | y ∈ [x]A}
and

X(y) ≤ ∨{X(y) | y ∈ [x]B}.
Therefore,

X(y) ≤ {∨{X(y) | y ∈ [x]A}} ∧ {∨{X(y) | y ∈ [x]B}}.
i.e., X ⊆ ORA+B(X). 353

(3) For any x ∈ U and A, B ⊆ AT , since RA(∼ 354

X) =∼ RA(X) and RB(∼ X) =∼ RB(X), then 355

we have 356
357

ORA+B(∼ X)(x) = {∧{1 − X(y) | y ∈ [x]A}} ∨ 358

{∧{1 − X(y) | y ∈ [x]B}} 359

= {1 − ∨{X(y) | y ∈ [x]A}} ∨ 360

{1 − ∨{X(y) | y ∈ [x]B}} 361

= 1 − {∨{X(y) | y ∈ [x]A}} ∧ 362

{∨{X(y) | y ∈ [x]B}} 363

= ∼ ORA+B(X)(x). 364

(4) By ORA+B(∼ X) =∼ ORA+B(X), we have 365

ORA+B(X) =∼ ORA+B(∼ X). So it can be 366

found that ORA+B(∼ X) =∼ ORA+B(X). 367

(5) Since for any x ∈ U, U(x) = 1, then for any 368

A, B ⊆ U, 369

370

ORA+B(U)(x) = {∧{U(y) | y ∈ [x]A}} ∨ 371

{∧{U(y) | y ∈ [x]B}} = 1 = U(x) 372

and 373

ORA+B(U)(x) = {∨{U(y) | y ∈ [x]A}} ∧ 374

{∨{U(y) | y ∈ [x]B}} = 1 = U(x). 375

So ORA+B(U) = ORA+B(U) = U. 376

(6) From the duality of the approximation operators 377

in (3) and (4), it is easy to prove ORA+B(∅) = 378

ORA+B(∅) = ∅ by property (5). � 379

Proposition 3.2. Let I = (U, AT, F ) be an information 380

system, B, A ⊆ AT, X, Y ∈ F (U). Then the following 381

properties hold.
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(1) ORA+B(X ∩ Y ) ⊆ ORA+B(X) ∩ ORA+B(Y ),382

(2) ORA+B(X ∪ Y ) ⊇ ORA+B(X) ∪ ORA+B(Y );383

(3) X ⊆ Y ⇒ ORA+B(X) ⊆ ORA+B(Y ),384

(4) X ⊆ Y ⇒ ORA+B(X) ⊆ ORA+B(Y );385

(5) ORA+B(X ∪ Y ) ⊇ ORA+B(X) ∪ ORA+B(Y ),386

(6) ORA+B(X ∩ Y ) ⊆ ORA+B(X) ∩ ORA+B(Y ).387

Proof. All terms hold when A = B or X = Y as they388

will degenerate into single granulation fuzzy rough set.389

If A /= B and X /= Y , the proposition can be proved as390

follows.391

(1) For any x ∈ U, A, B ⊆ AT and X, Y ∈ F (U),392

393

ORA+B(X ∩ Y )(x)394

= {∧{(X ∩ Y )(y) | y ∈ [x]A}} ∨395

{∧{(X ∩ Y )(y) | y ∈ [x]B}}396

= {∧{X(y) ∧ Y (y) | y ∈ [x]A}} ∨397

{∧{X(y) ∧ Y (y) | y ∈ [x]B}}398

= {RA(X)(x) ∧ RA(Y )(x)} ∨ {RB(X)(x) ∧ RB(Y )(x)}399

≤ {RA(X)(x) ∨ RB(X)(x)} ∧ {RA(Y )(x)400

∨RB(Y )(x)}401

= ORA+B(X)(x) ∧ ORA+B(Y )(x).402

Then ORA+B(X ∩ Y ) ⊆ ORA+B(X) ∩ ORA+B(Y ).403

(2) Similarly, for any x ∈ U, A, B ⊆ AT and X, Y ∈404

F (U),405

406

ORA+B(X ∪ Y )(x)407

= {∨{(X ∪ Y )(y) | y ∈ [x]A}} ∧408

{∨{(X ∪ Y )(y) | y ∈ [x]B}}409

= {∨{X(y) ∨ Y (y) | y ∈ [x]A}} ∧410

{∨{X(y) ∨ Y (y) | y ∈ [x]B}}411

= {RA(X)(x) ∨ RA(Y )(x)} ∧ {RB(X)(x) ∨ RB(Y )(x)}412

≥ {RA(X)(x) ∧ RB(X)(x)} ∨ {RA(Y )(x)413

∧RB(Y )(x)}414

= ORA+B(X)(x) ∨ ORA+B(Y )(x).415

Then ORA+B(X ∪ Y ) ⊇ ORA+B(X) ∪ ORA+B(Y ).416

(3) Since for any x ∈ U, we have X(y) ≤ Y (y). Then417

the properties hold obviously by Definition 3.1.418

(4) The properties can be proved similarly to (3).419

(5) Since X ⊆ X ∪ Y , and Y ⊆ X ∪ Y , then 420

ORA+B(X) ⊆ ORA+B(X ∪ Y ) and ORA+B(Y ) 421

⊆ ORA+B(X ∪ Y ). So the property 422

ORA+B(X ∪ Y ) ⊇ ORA+B(X) ∪ ORA+B(Y ) 423

obviously holds. 424

(6) This item can be proved similarly to (5) by (4). 425

The proposition was proved. � 426

The lower and upper approximation in Definition 3.1 427

are a pair of fuzzy sets. If we associate the cut set of a 428

fuzzy set, we can make a description of a fuzzy set X 429

by a classical set in an information system. 430

Definition 3.2. Let I = (U, AT, F ) be an information
system, A, B ⊆ AT and X ∈ F (U). For any 0 < β ≤
α ≤ 1, the lower approximation ORA+B(X) and upper
approximation ORA+B(X) of X about the α, β cut sets
are defined, respectively, as follows

ORA+B(X)α = {x | ORA+B(X)(x) ≥ α},
ORA+B(X)β = {x | ORA+B(X)(x) ≥ β}.

ORA+B(X)α can be explained as the set of objects in 431

U which possibly belong to X and the memberships of 432

which are more than α, while ORA+B(X)β is the set 433

of objects in U which possibly belong to X and the 434

memberships of which are more than β. 435

Proposition 3.3. Let I = (U, AT, F ) be an informa- 436

tion system, A, B ⊆ AT and X, Y ∈ F (U). For any 437

0 < β ≤ α ≤ 1, we have 438

(1) ORA+B(X ∩ Y )α ⊆ ORA+B(X)α ∩ 439

ORA+B(Y )α, 440

(2) ORA+B(X ∪ Y )β ⊇ ORA+B(X)β ∪ 441

ORA+B(Y )β; 442

(3) X ⊆ Y ⇒ ORA+B(X)α ⊆ ORA+B(Y )α, 443

(4) X ⊆ Y ⇒ ORA+B(X)β ⊆ ORA+B(Y )β; 444

(5) ORA+B(X ∪ Y )α ⊇ ORA+B(X)α ∪ 445

ORA+B(Y )α, 446

(6) ORA+B(X ∩ Y )β ⊆ ORA+B(X)β ∩ 447

ORA+B(Y )β. 448

Proof. It is easy to prove by Definition 3.2 and Propo- 449

sition 3.2. � 450

In the following, we will introduce the optimistic 451

multi-granulation fuzzy rough set (in brief OMGFRS) 452

and its corresponding properties by extending the opti- 453

mistic two-granulation fuzzy rough set. 454
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Definition 3.3. Let I = (U, AT, F ) be an information
system, Ai ⊆ AT . For the fuzzy set X ∈ F (U), denote

OR m∑
i=1

Ai

(X)(x) =
m∨

i=1

{
∧

{X(y) | y ∈ [x]Ai}},

OR m∑
i=1

Ai

(X)(x) =
m∧

i=1

{
∨

{X(y) | y ∈ [x]Ai}},

where “
∨

" means “max” and “
∧

" means “min”, then
FR m∑

i=1

Ai

(X) and OR m∑
i=1

Ai

(X) are respectively called the

optimistic multi-granulation lower approximation and
upper approximation of X with respect to the subsets of
attributes Ai, 1 ≤ i ≤ m. X is a multi-granulation fuzzy
rough set if and only if OR m∑

i=1

Ai

(X) /= OR m∑
i=1

Ai

(X).

Otherwise, X is a multi-granulation fuzzy definable set.
The boundary of the fuzzy rough set X is defined as

BndO
R m∑

i=1

Ai

(X) = OR m∑
i=1

Ai

(X) ∩ (∼ OR m∑
i=1

Ai

(X)).

It can be found that the OMGFRS will be degenerated455

into fuzzy rough set when Ai = Aj, i /= j. That is to456

say, a fuzzy rough set is a special instance of OMGFRS.457

Besides, this model can also been turned the OMGRS458

if the considered set is a crisp one. What’s more, the459

OMGFRS will be degenerated into Pawlak rough set if460

Ai = Aj, i /= j and the considered concept X is a crisp461

set.462

The properties about OMGFRS are listed in the463

following which can be extended from the OTGFRS464

model.465

Proposition 3.4. Let I = (U, AT, F ) be an information466

system, Ai ⊆ AT, 1 ≤ i ≤ m and X ∈ F (U). Then the467

following properties hold.468

(1) OR m∑
i=1

Ai

(X) ⊆ X,469

(2) OR m∑
i=1

Ai

(X) ⊇ X;470

(3) OR m∑
i=1

Ai

(∼ X) =∼ R m∑
i=1

Ai

(X),471

(4) OR m∑
i=1

Ai

(∼ X) =∼ OR m∑
i=1

Ai

(X);472

(5) OR m∑
i=1

Ai

(U) = OR m∑
i=1

Ai

(U) = U, 473

(6) OR m∑
i=1

Ai

(∅) = OR m∑
i=1

Ai

(∅) = ∅. 474

Proof. The proof of this proposition is similar to Propo- 475

sition 3.1. � 476

Proposition 3.5. Let I = (U, AT, F ) be an information 477

system, Ai ⊆ AT, 1 ≤ i ≤ m, X, Y ∈ F (U). Then the 478

following properties hold. 479

(1) OR m∑
i=1

Ai

(X ∩ Y ) ⊆ OR m∑
i=1

Ai

(X) ∩ OR m∑
i=1

Ai

(Y ), 480

(2) OR m∑
i=1

Ai

(X ∪ Y ) ⊇ OR m∑
i=1

Ai

(X) ∪ OR m∑
i=1

Ai

(Y ); 481

(3) X ⊆ Y ⇒ OR m∑
i=1

Ai

(X) ⊆ OR m∑
i=1

Ai

(Y ), 482

(4) X ⊆ Y ⇒ OR m∑
i=1

Ai

(X) ⊆ OR m∑
i=1

Ai

(Y ); 483

(5) OR m∑
i=1

Ai

(X ∪ Y ) ⊇ OR m∑
i=1

Ai

(X) ∪ OR m∑
i=1

Ai

(Y ); 484

(6) OR m∑
i=1

Ai

(X ∩ Y ) ⊆ OR m∑
i=1

Ai

(X) ∩ OR m∑
i=1

Ai

(Y ). 485

Proof. The proof of this proposition is similar to Propo- 486

sition 3.2. � 487

Definition 3.4. Let I = (U, AT, F ) be an information
system, Ai ⊆ AT, 1 ≤ i ≤ m, and X ⊆ U. For any 0 <

β ≤ α ≤ 1, the lower approximation OR m∑
i=1

Ai

(X) and

upper approximation OR m∑
i=1

Ai

(X) of X about the α, β

cut sets are defined, respectively, as follows

OR m∑
i=1

Ai

(X)α = {x | OR m∑
i=1

Ai

(X)(x) ≥ α},

OR m∑
i=1

Ai

(X)β = {x | OR m∑
i=1

Ai

(X)(x) ≥ β}.

OR m∑
i=1

Ai

(X)α can be explained as the set of objects in 488

U which surely belong to X and the memberships of 489

which are more than α, while OR m∑
i=1

Ai

(X)β is the set 490
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of objects in U which possibly belong to X and the491

memberships of which are more than β.492

Proposition 3.6. Let I = (U, AT, F ) be an information493

system, Ai ⊆ AT, 1 ≤ i ≤ m, and X, Y ⊆ U. For any494

0 < β ≤ α ≤ 1, we have495

(1) OR m∑
i=1

Ai

(X ∩ Y )α ⊆OR m∑
i=1

Ai

(X)α ∩ OR m∑
i=1

Ai

(Y )α,496

(2) OR m∑
i=1

Ai

(X ∪ Y )β ⊇OR m∑
i=1

Ai

(X)β ∪ OR m∑
i=1

Ai

(Y )β;497

(3) X ⊆ Y ⇒ OR m∑
i=1

Ai

(X)α ⊆ OR m∑
i=1

Ai

(Y )α,498

(4) X ⊆ Y ⇒ OR m∑
i=1

Ai

(X)β ⊆ OR m∑
i=1

Ai

(Y )β;499

(5) OR m∑
i=1

Ai

(X ∪ Y )α ⊇OR m∑
i=1

Ai

(X)α ∪ OR m∑
i=1

Ai

(Y )α,500

(6) OR m∑
i=1

Ai

(X ∩ Y )β ⊆OR m∑
i=1

Ai

(X)β ∩ OR m∑
i=1

Ai

(Y )β.501

Proof. It is easy to prove by Definition 3.4 and Propo-502

sition 3.5. �503

3.2. The pessimistic multi-granulation fuzzy rough504

set505

In this subsection, we will propose another type506

of MGFRS. We first define the pessimistic two-507

granulation fuzzy rough set (in brief the PTGFRS).508

Definition 3.5. Let I = (U, AT, F ) be an informa-
tion system, A, B ⊆ AT . For the fuzzy set X ∈ F (U),
denote

PRA+B(X)(x) ={∧{X(y) | y ∈ [x]A}}∧
{∧{X(y) | y ∈ [x]B}},

PRA+B(X)(x) ={∨{X(y) | y ∈ [x]A}}∨
{∨{X(y) | y ∈ [x]B}},

then PRA+B(X) and PRA+B(X) are respectively
called the pessimistic two-granulation lower approx-
imation and upper approximation of X with respect
to the subsets of attributes A and B. X is the
pessimistic two-granulation fuzzy rough set if and
only if PRA+B(X) /= PRA+B(X). Otherwise, X is the
pessimistic two-granulation fuzzy definable set. The
boundary of the fuzzy rough set X is defined as

BndP
RA+B

(X) = PRA+B(X) ∩ (∼ PRA+B(X)).

It can be found that the PTGFRS will be degener- 509

ated into a fuzzy rough set when A = B. That is to 510

say, a fuzzy rough set is also a special instance of the 511

PTGFRS. What’s more, the PTGFRS will be degener- 512

ated into Pawlak rough set if A = B and the considered 513

concept X is a crisp set. 514

In the following, we employ an example to illustrate 515

the above concepts. 516

Example 3.2. (Continued from Example 3.1) From 517

Definition 3.2, we can compute the pessimistic two- 518

granulation lower and upper approximation of D is 519

PRA+B(D) = (0.6, 0.7, 0.6, 0.6, 0.4, 0.4, 0.7, 0.4, 520

0.6, 0.7), 521

PRA+B(D) = (0.8, 0.7, 0.9, 0.9, 0.7, 0.7, 0.7, 0.7, 522

0.9, 0.7). 523

We can find that the ten students are good at most at 524

the degree 0.6, 0.7, 0.6, 0.6, 0.4, 0.4, 0.7, 0.4, 0.6, 0.7, 525

respectively, if we evaluate the students by both A 526

and B; and the ten students are good at least at 527

the degree 0.8, 0.7, 0.9, 0.9, 0.7, 0.7, 0.7, 0.7, 0.9, 0.7, 528

respectively, if we evaluate the students only by either 529

A or B. 530

Obviously, the following can be found 531

PRA+B(D) = RA(D) ∩ RB(D), 532

PRA+B(D) = RA(D) ∪ RB(D), 533

PRA+B(D) ⊆ RA∪B(D) ⊆ D ⊆ RA∪B(D) 534

⊆ PRA+B(D). 535

Proposition 3.7. Let I = (U, AT, F ) be an information 536

system, B, A ⊆ AT and X ∈ F (U). Then the following 537

properties hold. 538

(1) PRA+B(X) ⊆ X, 539

(2) PRA+B(X) ⊇ X; 540

(3) PRA+B(∼ X) =∼ PRA+B(X), 541

(4) PRA+B(∼ X) =∼ PRA+B(X); 542

(5) PRA+B(U) = PRA+B(U) = U, 543

(6) PRA+B(∅) = PRA+B(∅) = ∅. 544

Proof. It is obvious that all terms hold when A = B. 545

When A /= B, the proposition can be proved as follows. 546

(1) For any x ∈ U and A, B ⊆ AT , since RA(X) ⊆ 547

X, we know 548
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∧{X(y) | y ∈ [x]A} ≤ X(y)

and

∧{X(y) | y ∈ [x]B} ≤ X(y)

Therefore,

{∧{X(y) | y ∈ [x]A}} ∧ {∧{X(y) | y ∈ [x]B}} ≤ X(y).

i.e., PRA+B(X) ⊆ X.549

(2) For any x ∈ U and A, B ⊆ AT , since X ⊆550

RA(X), we know551

X(y) ≤ ∨{X(y) | y ∈ [x]A}
and

X(y) ≤ ∨{X(y) | y ∈ [x]B}
Therefore,

X(y) ≤ {∨{X(y) | y ∈ [x]A}} ∨ {∨{X(y) | y ∈ [x]B}}.
i.e., X ⊆ PRA+B(X).552

(3) For any x ∈ U and A, B ⊆ AT , since RA(∼553

X) =∼ RA(X) and RB(∼ X) =∼ RB(X), then554

we have555
556

PRA+B(∼ X)(x) = {∧{1 − X(y) | y ∈ [x]A}}557

∧{∧{1 − X(y) | y ∈ [x]B}}558

= {1 − ∨{X(y) | y ∈ [x]A}}559

∧{1 − ∨{X(y) | y ∈ [x]B}}560

= 1 − {∨{X(y) | y ∈ [x]A}}561

∨{∨{X(y) | y ∈ [x]B}}562

= ∼ PRA+B(X)(x).563

(4) By PRA+B(∼ X) =∼ PRA+B(X), we have564

PRA+B(X) =∼ PRA+B(∼ X). So it can be565

found that PRA+B(∼ X) =∼ PRA+B(X).566

(5) Since for any x ∈ U, U(x) = 1, then for any567

A, B ⊆ U, we have568

569

PRA+B(U)(x) = {∧{U(y) | y ∈ [x]A}} ∧570

{∧{U(y) | y ∈ [x]B}} = 1 = U(x),571

PRA+B(U)(x)572

= {∨{U(y) | y ∈ [x]A}} ∨573

{∨{U(y) | y ∈ [x]B}} = 1 = U(x).574

So PRA+B(U) = PRA+B(U) = U.575

(6) From the duality of the approximation operators in 576

(6), it is easy to prove PRA+B(∅) = PRA+B(∅) = 577

∅. � 578

Proposition 3.8. Let I = (U, AT, F ) be an information 579

system, B, A ⊆ AT, X, Y ∈ F (U). Then the following 580

properties hold. 581

(1) PRA+B(X ∩ Y ) = PRA+B(X) ∩ PRA+B(Y ), 582

(2) PRA+B(X ∪ Y ) = PRA+B(X) ∪ PRA+B(Y ); 583

(3) X ⊆ Y ⇒ PRA+B(X) ⊆ PRA+B(Y ), 584

(4) X ⊆ Y ⇒ PRA+B(X) ⊆ PRA+B(Y ); 585

(5) PRA+B(X ∪ Y ) ⊇ PRA+B(X) ∪ PRA+B(Y ); 586

(6) PRA+B(X ∩ Y ) ⊆ PRA+B(X) ∩ PRA+B(Y ). 587

Proof. All terms hold when A = B or X = Y as they 588

will degenerate into single granulation fuzzy rough set. 589

If A /= B and X /= Y , the proposition can be proved as 590

follows. 591

(1) For any x ∈ U, A, B ⊆ AT and X, Y ∈ F (U), 592

593

PRA+B(X ∩ Y )(x) = {∧{(X ∩ Y )(y) | y ∈ [x]A}} ∧ 594

{∧{(X ∩ Y )(y) | y ∈ [x]B}} 595

= {∧{X(y) ∧ Y (y) | y ∈ [x]A}} ∧ 596

{∧{X(y) ∧ Y (y) | y ∈ [x]B}} 597

= {RA(X)(x) ∧ RA(Y )(x)} ∧ 598

{RB(X)(x) ∧ RB(Y )(x)} 599

= {RA(X)(x) ∧ RB(X)(x)} ∧ 600

{RA(Y )(x) ∧ RB(Y )(x)} 601

= RA+B(X)(x) ∧ RA+B(Y )(x). 602

Then PRA+B(X ∩ Y ) = PRA+B(X) ∩ PRA+B(Y ). 603

(2) Similarly, for any x ∈ U, A, B ⊆ AT and X, Y ∈ 604

F (U), 605

606

PRA+B(X ∪ Y )(x) = {∨{(X ∪ Y )(y) | y ∈ [x]A}} ∨ 607

{∨{(X ∪ Y )(y) | y ∈ [x]B}} 608

= {∨{X(y) ∨ Y (y) | y ∈ [x]A}} ∨ 609

{∨{X(y) ∨ Y (y) | y ∈ [x]B}} 610

= {RA(X)(x) ∨ RA(Y )(x)} ∨ 611

{RB(X)(x) ∨ RB(Y )(x)} 612

= {RA(X)(x) ∨ RB(X)(x)} ∨ 613

{RA(Y )(x) ∨ RB(Y )(x)} 614

= PRA+B(X)(x) ∨ PRA+B(Y )(x). 615
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Then PRA+B(X ∪ Y ) = PRA+B(X) ∪ PRA+B(Y ).616

(3) Since for any x ∈ U, we have X(y) ≤ Y (y). Then617

the properties hold obviously by Definition 3.5.618

(4) The properties can be proved as (3).619

(5) Since X ⊆ X ∪ Y , and Y ⊆ X ∪ Y , then620

PRA+B(X) ⊆ PRA+B(X ∪ Y ) and PRA+B(Y )621

⊆ PRA+B(X ∪ Y ). So the property622

PRA+B(X ∪ Y ) ⊇ PRA+B(X) ∪ PRA+B(Y )623

obviously holds.624

(6) This item can be proved similarly to (5) by (4).625

The proposition was proved.626

Definition 3.6. Let I = (U, AT, F ) be an information
system, A, B ⊆ AT and X ∈ F (U). For any 0 < β ≤
α ≤ 1, the lower approximation PRA+B(X) and upper
approximation PRA+B(X) of X about the α, β cut sets
are defined, respectively, as follows

PRA+B(X)α = {x | PRA+B(X)(x) ≥ α},
PRA+B(X)β = {x | PRA+B(X)(x) ≥ β}.

PRA+B(X)α can be explained as the set of objects in627

U which possibly belong to X and the memberships of628

which are more than α, while PRA+B(X)β is the set629

of objects in U which possibly belong to X and the630

memberships of which are more than β.631

Proposition 3.9. Let I = (U, AT, F ) be an informa-632

tion system, A, B ⊆ AT and X, Y ∈ F (U). For any633

0 < β ≤ α ≤ 1, we have634

(1) PRA+B(X ∩ Y )α = PRA+B(X)α ∩ PRA+B(Y )α,635

(2) PRA+B(X ∪ Y )β = PRA+B(X)β ∪ PRA+B(Y )β;636

(3) X ⊆ Y ⇒ PRA+B(X)α ⊆ PRA+B(Y )α,637

(4) X ⊆ Y ⇒ PRA+B(X)β ⊆ PRA+B(Y )β;638

(5) PRA+B(X ∪ Y )α ⊇ PRA+B(X)α ∪ PRA+B(Y )α,639

(6) PRA+B(X ∩ Y )β ⊆ PRA+B(X)β ∩ PRA+B(Y )β.640

Proof. It is easy to prove by Definition 3.6 and Propo-641

sition 3.8. �642

In the following, we will introduce the pes-643

simistic multi-granulation fuzzy rough set (in brief the644

PMGFRS) and its corresponding properties by extend-645

ing the pessimistic two-granulation fuzzy rough set.646

Definition 3.7. Let I = (U, AT, F ) be an informa-
tion system, A, B ⊆ AT . For the fuzzy set X ∈ F (U),
denote

PR m∑
i=1

Ai

(X)(x) =
m∧

i=1

{
∧

{X(y) | y ∈ [x]Ai}},

PR m∑
i=1

Ai

(X)(x) =
m∨

i=1

{
∨

{X(y) | y ∈ [x]Ai}},

where “
∨

" means “max” and “
∧

" means “min”, then
PR m∑

i=1

Ai

(X) and PR m∑
i=1

Ai

(X) are respectively called

the pessimistic multi-granulation lower approxima-
tion and upper approximation of X with respect to
the subsets of attributes Ai(1 ≤ i ≤ m). X is the pes-
simistic multi-granulation fuzzy rough set if and only
if PR m∑

i=1

Ai

(X) /= PR m∑
i=1

Ai

(X). Otherwise, X is the pes-

simistic multi-granulation fuzzy definable set. The
boundary of the fuzzy rough set X is defined as

BndP
R m∑

i=1

Ai

(X) = PR m∑
i=1

Ai

(X) ∩ (∼ PR m∑
i=1

Ai

(X)).

It can be found that the PMGFRS will be degenerated 647

into fuzzy rough set when Ai = Aj, i /= j. That is to 648

say, a fuzzy rough set is also a special instance of the 649

PMGFRS. Besides, this model can also been turned 650

the pessimistic MGRS if the considered set is a crisp 651

one. What’s more, the MGFRS will be degenerated into 652

Pawlak rough set if Ai = Aj, i /= j and the considered 653

concept X is a crisp set. 654

The properties about the PMGFRS are listed in the 655

following which can be extended from the PTGFRS 656

model. 657

Proposition 3.10. Let I = (U, AT, F ) be an informa-
658

tion system, Ai ⊆ AT, 1 ≤ i ≤ m and X ∈ F (U). Then 659

the following properties hold. 660

(1) PR m∑
i=1

Ai

(X) ⊆ X, 661

(2) PR m∑
i=1

Ai

(X) ⊇ X; 662

(3) PR m∑
i=1

Ai

(∼ X) =∼ PR m∑
i=1

Ai

(X), 663

(4) PR m∑
i=1

Ai

(∼ X) =∼ PR m∑
i=1

Ai

(X); 664

(5) PR m∑
i=1

Ai

(U) = PR m∑
i=1

Ai

(U) = U, 665
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(6) PR m∑
i=1

Ai

(∅) = PR m∑
i=1

Ai

(∅) = ∅.666

Proof. The proof of this proposition is similar to Propo-667

sition 3.7. �668

Proposition 3.11. Let I = (U, AT, F ) be an informa-669

tion system, Ai ⊆ AT, 1 ≤ i ≤ m, X, Y ∈ F (U). Then670

the following properties hold.671

(1) PR m∑
i=1

Ai

(X ∩ Y ) = PR m∑
i=1

Ai

(X) ∩ PR m∑
i=1

Ai

(Y ),672

(2) PR m∑
i=1

Ai

(X ∪ Y ) = PR m∑
i=1

Ai

(X) ∪ PR m∑
i=1

Ai

(Y );673

(3) X ⊆ Y ⇒ PR m∑
i=1

Ai

(X) ⊆ PR m∑
i=1

Ai

(Y ),674

(4) X ⊆ Y ⇒ PR m∑
i=1

Ai

(X) ⊆ PR m∑
i=1

Ai

(Y );675

(5) PR m∑
i=1

Ai

(X ∪ Y ) ⊇ PR m∑
i=1

Ai

(X) ∪ PR m∑
i=1

Ai

(Y ),676

(6) PR m∑
i=1

Ai

(X ∩ Y ) ⊆ PR m∑
i=1

Ai

(X) ∩ PR m∑
i=1

Ai

(Y ).677

Proof. The proof of this proposition is similar to Propo-678

sition 3.8.679

Definition 3.8. Let I = (U, AT, F ) be an information
system, Ai ⊆ AT, 1 ≤ i ≤ m, and X ∈ F (U). For any
0 < β ≤ α ≤ 1, the lower approximation PR m∑

i=1

Ai

(X)

and upper approximation PR m∑
i=1

Ai

(X) of X about the α,

β cut sets are defined, respectively, as follows

PR m∑
i=1

Ai

(X)α = {x | PR m∑
i=1

Ai

(X)(x) ≥ α},

PR m∑
i=1

Ai

(X)β = {x | PR m∑
i=1

Ai

(X)(x) ≥ β}.

PR m∑
i=1

Ai

(X)α can be explained as the set of objects in680

U which surely belong to X and the memberships of681

which are more than α, while PR m∑
i=1

Ai

(X)β is the set682

of objects in U which possibly belong to X and the683

memberships of which are more than β.684

Proposition 3.12. Let I = (U, AT, F ) be an informa- 685

tion system, Ai ⊆ AT, 1 ≤ i ≤ m, and X, Y ∈ F (U). 686

For any 0 < β ≤ α ≤ 1, we have 687

(1) PR m∑
i=1

Ai

(X ∩ Y )α =PR m∑
i=1

Ai

(X)α∩PR m∑
i=1

Ai

(Y )α, 688

(2) PR m∑
i=1

Ai

(X ∪ Y )β =PR m∑
i=1

Ai

(X)β∪PR m∑
i=1

Ai

(Y )β; 689

(3) X ⊆ Y ⇒ PR m∑
i=1

Ai

(X)α ⊆ PR m∑
i=1

Ai

(Y )α, 690

(4) X ⊆ Y ⇒ PR m∑
i=1

Ai

(X)β ⊆ PR m∑
i=1

Ai

(Y )β; 691

(5) PR m∑
i=1

Ai

(X ∪ Y )α ⊇PR m∑
i=1

Ai

(X)α∪PR m∑
i=1

Ai

(Y )α, 692

(6) PR m∑
i=1

Ai

(X ∩ Y )β ⊆ SR m∑
i=1

Ai

(X)β∩PR m∑
i=1

Ai

(Y )β. 693

Proof. It is easy to prove by Definition 3.8 and Propo- 694

sition 3.11. � 695

4. The interrelationship among SGFRS, the 696

OMGFRS and the PMGFRS 697

After the discussion of the properties of the 698

OMGFRS and the PMGFRS, we will investigate the 699

interrelationship among SGFRS, the OMGFRS and the 700

PMGFRS in this section. 701

Proposition 4.1. Let I = (U, AT, F ) be an informa- 702

tion system, B, A ⊆ AT,X ∈ F (U). Then the following 703

properties hold. 704

(1) ORA+B(X) = RA(X) ∪ RB(X), 705

(2) ORA+B(X) = RA(X) ∩ RB(X); 706

(3) ORA+B(X) ⊆ RA∪B(X), 707

(4) ORA+B(X) ⊇ RA∪B(X). 708

Proof. (1) For any x ∈ U, A, B ⊆ AT and X ∈ F (U),

ORA+B(X)(x) = {∧{X(y) | y ∈ [x]A}}∨
{∧{X(y) | y ∈ [x]B}}

= RA(X)(x) ∨ RB(X)(x).

That is to say ORA+B(X) = RA(X) ∪ RB(X) is true. 709

(2) For any x ∈ U, A, B ⊆ AT and X ∈ F (U), 710
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ORA+B(X)(x) = {∨{X(y) | y ∈ [x]A}}∧
{∨{X(y) | y ∈ [x]B}}

= RA(X)(x) ∧ RB(X)(x).

So ORA+B(X) = RA(X) ∩ RB(X) holds.711

(3) Since [x]A∪B ⊆ [x]A and [x]A∪B ⊆ [x]B, then we712

have713

∧{X(y) | y ∈ [x]A} ≤ ∧{X(y) | y ∈ [x]A∪B}
and

∧{X(y) | y ∈ [x]B} ≤ ∧{X(y) | y ∈ [x]A∪B}.
Therefore, we have {∧{X(y) | y ∈ [x]A}} ∨714

{∧{X(y) | y ∈ [x]B}} ≤ ∧{X(y) | y ∈ [x]A∪B}.715

That is to say, ORA+B(X) ⊆ RA∪B(X) holds.716

(4) This item can be proved similarly as (3).717

Proposition 4.2. Let I = (U, AT, F ) be an informa-718

tion system, Ai ⊆ AT, 1 ≤ i ≤ m, X ∈ F (U). Then the719

following properties hold.720

(1) OR m∑
i=1

Ai

(X) =
m⋃

i=1
RAi (X),721

(2) OR m∑
i=1

Ai

(X) =
m⋂

i=1
RAi (X);722

(3) OR m∑
i=1

Ai

(X) ⊆ R m⋃
i=1

Ai

(X),723

(4) OR m∑
i=1

Ai

(X) ⊇ R m⋃
i=1

Ai

(X).724

Proof The proof of this proposition is similar to Propo-725

sition 4.1. �726

Proposition 4.3. Let I = (U, AT, F ) be an informa-727

tion system, B, A ⊆ AT,X ∈ F (U). Then the following728

properties hold.729

(1) PRA+B(X) = RA(X) ∩ RB(X),730

(2) PRA+B(X) = RA(X) ∪ RB(X);731

(3) PRA+B(X) ⊆ RA∪B(X),732

(4) PRA+B(X) ⊇ RA∪B(X).733

Proof. (1) For any x ∈ U, A, B ⊆ AT and X ∈ F (U),

PRA+B(X)(x) = {∧{X(y) | y ∈ [x]A}}∧
{∧{X(y) | y ∈ [x]B}}

= RA(X)(x) ∧ RB(X)(x).

That is to say, PRA+B(X) = RA(X) ∩ RB(X) is true. 734

(2) For any x ∈ U, A, B ⊆ AT and X ∈ F (U), 735

PRA+B(X)(x) = {∨{X(y) | y ∈ [x]A}}∨
{∨{X(y) | y ∈ [x]B}}

= RA(X)(x) ∨ RB(X)(x).

So PRA+B(X) = RA(X) ∪ RB(X) holds. 736

(3) Since [x]A∪B ⊆ [x]A and [x]A∪B ⊆ [x]B, then we 737

have 738

∧{X(y) | y ∈ [x]A} ≤ ∧{X(y) | y ∈ [x]A∪B}
and

∧{X(y) | y ∈ [x]B} ≤ ∧{X(y) | y ∈ [x]A∪B}.
Therefore, we have{∧{X(y) | y ∈ [x]A}} ∧ 739

{∧{X(y) | y ∈ [x]B}} ≤ ∧{X(y) | y ∈ [x]A∪B}. 740

That is to say, PRA+B(X) ⊆ RA∪B(X) holds. 741

(4) This item can be proved similarly to (3). 742

Proposition 4.4. Let I = (U, AT, F ) be an informa- 743

tion system, Ai ⊆ AT, 1 ≤ i ≤ m, X ∈ F (U). Then the 744

following properties hold. 745

(1) PR m∑
i=1

Ai

(X) =
m⋂

i=1
RAi (X), 746

(2) PR m∑
i=1

Ai

(X) =
m⋃

i=1
RAi (X); 747

(3) PR m∑
i=1

Ai

(X) ⊆ R m⋃
i=1

Ai

(X), 748

(4) PR m∑
i=1

Ai

(X) ⊇ R m⋃
i=1

Ai

(X). 749

Proof. The proof of this proposition is similar to Propo- 750

sition 4.3. � 751

Proposition 4.5. Let I = (U, AT, F ) be an informa- 752

tion system, B, A ⊆ AT,X ∈ F (U). Then the following 753

properties hold. 754

(1) PRA+B(X) ⊆ ORA+B(X) ⊆ RA∪B(X); 755

(2) PRA+B(X) ⊇ ORA+B(X) ⊇ RA∪B(X). 756

Proof. It can be obtained by Definition 3.1, 3.3 and 757

Proposition 4.1. � 758
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Proposition 4.6. Let I = (U, AT, F ) be an informa-759

tion system, Ai ⊆ AT, 1 ≤ i ≤ m, X ∈ F (U). Then the760

following properties hold.761

(1) PR m∑
i=1

Ai

(X) ⊆ OR m∑
i=1

Ai

(X) ⊆ R m⋃
i=1

Ai

(X);762

(2) PR m∑
i=1

Ai

(X) ⊇ OR m∑
i=1

Ai

(X) ⊇ R m⋃
i=1

Ai

(X).763

Proof. It can be obtained easily by Proposition 4.5. �764

Proposition 4.7. Let I = (U, AT, F ) be an informa-765

tion system, B, A ⊆ AT,X ∈ F (U). Then the following766

properties hold.767

(1) PRA+B(X) ⊆ RA(X)( or RB(X)) ⊆ ORA+B(X);768

(2) PRA+B(X) ⊇ RA(X)( or RB(X)) ⊇ ORA+B(X).769

Proof. It can be obtained by the former two terms in770

Proposition 4.1, 4.3. �771

Proposition 4.8. Let I = (U, AT, F ) be an informa-772

tion system, Ai ⊆ AT, 1 ≤ i ≤ m, X ∈ F (U). Then the773

following properties hold.774

(1) PR m∑
i=1

Ai

(X) ⊆ RAi (X) ⊆ OR m∑
i=1

Ai

(X);775

(2) PR m∑
i=1

Ai

(X) ⊇ RAi (X) ⊇ OR m∑
i=1

Ai

(X).776

Proof. It can be obtained directly by Proposition 4.7.�777

5. Measures of the OMGFRS and PMGFRS778

The uncertainty of a set is due to the existence of the779

borderline region. The wider the borderline region of a780

set is, the lower the accuracy of the set is. To express781

this idea more precisely, some elementary measures are782

usually defined to describe the accuracy of a set. For the783

above discussed MGFRS, we introduce the accuracy784

measure of them in the following.785

Definition 5.1. Let I = (U, AT, F ) be an information
system, Ai ⊆ AT, 1 ≤ i ≤ m. The optimistic and the

pessimistic rough measure of the fuzzy set X by
m∑

i=1
Ai

are defined as

ρF
m∑

i=1

Ai

(X) = 1 −

∣∣∣OR m∑
i=1

Ai

(X)
∣∣∣

∣∣∣OR m∑
i=1

Ai

(X)
∣∣∣ ,

ρS
m∑

i=1

Ai

(X) = 1 −

∣∣∣PR m∑
i=1

Ai

(X)
∣∣∣

∣∣∣PR m∑
i=1

Ai

(X)
∣∣∣ ,

where | . | means the cardinality of fuzzy set. If 786∣∣∣OR m∑
i=1

Ai

(X)
∣∣∣ = 0 or

∣∣∣PR m∑
i=1

Ai

(X)
∣∣∣ = 0, we prescribe 787

ρO
m∑

i=1

Ai

(X) = 0 or ρP
m∑

i=1

Ai

(X) = 0. 788

It is obvious that 0 ≤ ρO
m∑

i=1

Ai

(X) ≤ 1 and 0 ≤ 789

ρP
m∑

i=1

Ai

(X) ≤ 1. If the fuzzy set X is the optimistic 790

or the pessimistic multi-granulation definable, then 791

ρO
m∑

i=1

Ai

(X) = 0 or ρP
m∑

i=1

Ai

(X) = 0. 792

Definition 5.2. Let I = (U, AT, F ) be an information 793

system, Ai ⊆ AT, 1 ≤ i ≤ m. For any 0 < β ≤ α ≤ 1, 794

the optimistic α, β rough measure and the pessimistic 795

α, β rough measure of the fuzzy set X by
m∑

i=1
Ai are 796

defined respectively as 797

ρO
m∑

i=1

Ai

(X)(α,β) = 1 −

∣∣∣OR m∑
i=1

Ai

(X)α
∣∣∣

∣∣∣OR m∑
i=1

Ai

(X)β
∣∣∣ , 798

ρP
m∑

i=1

Ai

(X)(α,β) = 1 −

∣∣∣PR m∑
i=1

Ai

(X)α
∣∣∣

∣∣∣PR m∑
i=1

Ai

(X)β
∣∣∣ . 799

If
∣∣∣OR m∑

i=1

Ai

(X)β
∣∣∣ = 0 or

∣∣∣PR m∑
i=1

Ai

(X)β
∣∣∣ = 0, we pre- 800

scribe ρO
m∑

i=1

Ai

(X)(α,β) = 0 or ρP
m∑

i=1

Ai

(X)(α,β) = 0. 801

To describe conveniently in the following context, 802

we express the optimistic α, β rough measure and the 803

pessimistic α, β rough measure of the fuzzy set X by 804

m∑
i=1

Ai by using ρ
O,P
m∑

i=1

Ai

(X)(α,β). 805
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For the information system I = (U, AT, F ), denote

U/AT = {X1, X2, · · · , Xr}.

Proposition 5.1. For any 0 < β ≤ α ≤ 1, the optimistic806

α, β rough measure and the pessimisticα, β rough mea-807

sure of the fuzzy set X by
m∑

i=1
Ai satisfy the following808

properties.809

(1) 0 ≤ ρ
O,P
m∑

i=1

Ai

(X)(α,β) ≤ 1;810

(2) ρ
O,P
m∑

i=1

Ai

(X)(α,β) is non-decreasing for α and non-811

increasing for β;812

(3) If
r∨

i=1

∧
x∈Xi

X(x) < α, then ρ
O,P
m∑

i=1

Ai

(X)(α,β) = 1;813

(4) If α = β, X(x) = ci (∀x ∈ Xi, i ≤ r), i.e., if X is814

a constant fuzzy set in every equivalence class of815

U/AT , then ρ
O,P
m∑

i=1

Ai

(X)(α,β) = 0.816

Proof. (1) Since 0 < β ≤ α ≤ 1, then OR m∑
i=1

Ai

(X)α ⊆817

OR m∑
i=1

Ai

(X)β and PR m∑
i=1

Ai

(X)α ⊆ PR m∑
i=1

Ai

(X)β. It is818

easy to obtain that 0 ≤ ρ
O,P
m∑

i=1

Ai

(X)(α,β) ≤ 1.819

(2) If α1 < α2, then OR m∑
i=1

Ai

(X)α2 ⊆OR m∑
i=1

Ai

(X)α1 .820

So we have821

∣∣OR m∑
i=1

Ai

(X)α2

∣∣ ≤ ∣∣OR m∑
i=1

Ai

(X)α1

∣∣.

And so is for the pessimistic multi-granulation
fuzzy rough lower approximations. Therefore,
ρ

O,P
m∑

i=1

Ai

(X)(α1, β) ≤ ρ
O,P
m∑

i=1

Ai

(X)(α2, β). When β1 < β2,

we have OR m∑
i=1

Ai

(X)β2 ⊆ OR m∑
i=1

Ai

(X)β1 . Then

∣∣OR m∑
i=1

Ai

(X)β2

∣∣ ≤ ∣∣OR m∑
i=1

Ai

(X)β1

∣∣.

And so is for the pessimistic multi-granulation fuzzy 822

rough upper approximations. So ρ
O,P
m∑

i=1

Ai

(X)(α, β1) ≥ 823

ρ
O,P
m∑

i=1

Ai

(X)(α, β2). 824

(3) When
r∨

i=1

∧
x∈Xi

X(x) < α, we have 825

OR m∑
i=1

Ai

(X)α = ∅ and PR m∑
i=1

Ai

(X)α = ∅. Then 826

∣∣OR m∑
i=1

Ai

(X)α
∣∣ = 0 and

∣∣PR m∑
i=1

Ai

(X)α
∣∣ = 0. So 827

ρ
O,P
m∑

i=1

Ai

(X)(α,β) = 1. 828

(4) If α = β and X(x) = ci (∀x ∈ Xi, i ≤ r), 829

then OR m∑
i=1

Ai

(X) ≡ OR m∑
i=1

Ai

(X). Thus 830

OR m∑
i=1

Ai

(X)α ≡ OR m∑
i=1

Ai

(X)α. That is, 831

ρ
O,P
m∑

i=1

Ai

(X)(α,β) = 0. � 832

Proposition 5.2. For any 0 < β ≤ α ≤ 1, X is a con-
stant fuzzy set on U, i.e., X(x) = δ(∀x ∈ U), then

ρ
O,P
m∑

i=1

Ai

(X)(α,β) =
{

1, β < δ < α,

0, otherwise.

Proof. When β < δ < α, we have OR m∑
i=1

Ai

(X)α, 833

PR m∑
i=1

Ai

(X)α = ∅, and OR m∑
i=1

Ai

(X)β, PR m∑
i=1

Ai

(X)β = 834

U. Thus ρ
O,P
m∑

i=1

Ai

(X)(α,β) = 1. 835

If δ < β ≤ α, then OR m∑
i=1

Ai

(X)α = OR m∑
i=1

Ai

(X)β = 836

∅ and PR m∑
i=1

Ai

(X)α = PR m∑
i=1

Ai

(X)β = ∅. Thus 837

ρ
O,P
m∑

i=1

Ai

(X)(α,β) = 0 from the prescript. 838
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If β ≤ α ≤ δ, then OR m∑
i=1

Ai

(X)α = OR m∑
i=1

Ai

(X)β =839

U and PR m∑
i=1

Ai

(X)α = PR m∑
i=1

Ai

(X)β = U. Thus840

ρ
O,P
m∑

i=1

Ai

(X)(α,β) = 0. �841

Proposition 5.3. Let X, Y ∈ F (U). If X ⊆ Y ,
OR m∑

i=1

Ai

(X)β = OR m∑
i=1

Ai

(Y )β and PR m∑
i=1

Ai

(X)β =

PR m∑
i=1

Ai

(Y )β, then

ρ
O,P
m∑

i=1

Ai

(X)(α,β) ≤ ρ
O,P
m∑

i=1

Ai

(Y )(α,β).

Proof. For X ⊆ Y , we have OR m∑
i=1

Ai

(X)α ⊆842

OR m∑
i=1

Ai

(Y )α and OR m∑
i=1

Ai

(X)β = OR m∑
i=1

Ai

(Y )β.843

And so is for the pessimistic multi-granulation fuzzy844

rough approximations. Thus the proposition holds. �845

Proposition 5.4. Let X, Y ∈ F (U). If X ⊆ Y ,846

OR m∑
i=1

Ai

(X)α = OR m∑
i=1

Ai

(Y )α and PR m∑
i=1

Ai

(X)α =847

PR m∑
i=1

Ai

(Y )α, then ρ
O,P
m∑

i=1

Ai

(X)(α,β) ≤ ρ
O,P
m∑

i=1

Ai

(Y )(α,β).848

Proof. The proof is similar to Proposition 5.3. �849

Proposition 5.5. Let I = (U, AT, F ) be an information
system, Ai ⊆ AT, 1 ≤ i ≤ m. The optimistic rough
measure, the pessimistic rough measure of the fuzzy

set X by
m∑

i=1
Ai and the rough measure of the fuzzy set

X by Ai have the following relations.

ρP
m∑

i=1

Ai

(X) ≥ ρAi (X) ≥ ρO
m∑

i=1

Ai

(X) ≥ ρ m⋃
i=1

Ai

(X).

Proof. It is easy to prove by Proposition 4.8 and Defi-850

nition 5.1. �851

Example 5.1. (Continued from Example 3.1 and 3.2)852

We can compute the optimistic rough measure, the pes-853

simistic rough measure of D by A and B and compare854

with the rough measure of D by A or B. It follows that

ρO
A+B(D) = 1 − |ORA+B(D)|

|ORA+B(D)| = 1 − 6.2

7.2
≈ 0.139, 855

ρP
A+B(D) = 1 − |PRA+B(D)|

|PRA+B(D)| = 1 − 5.7

7.7
≈ 0.260, 856

ρA(D) = 1 − |RA(D)|
|RA(D)| = 1 − 6

7.3
≈ 0.178, 857

ρB(D) = 1 − |RB(D)|
|RB(D)| = 1 − 5.9

7.6
≈ 0.223, 858

ρA∪B(D) = 1 − |RA∪B(D)|
|RA∪B(D)| = 1 − 6.2

6.9
≈ 0.101. 859

Clearly, we have

ρP
A+B(D) ≥ ρA(D) ≥ ρO

A+B(D) ≥ ρA∪B(D)

and

ρP
A+B(D) ≥ ρB(D) ≥ ρO

A+B(D) ≥ ρA∪B(D).

Proposition 5.6. For any 0 < β ≤ α ≤ 1, the optimistic 860

α, β rough measure, pessimistic α, β rough measure of 861

the fuzzy set X by
m∑

i=1
Ai and the α, β rough measure 862

of the fuzzy set X by Ai have the following rela- 863

tions. ρP
m∑

i=1

Ai

(X)(α,β) ≥ ρAi (X)(α,β) ≥ ρO
m∑

i=1

Ai

(X)(α,β) ≥ 864

ρ m⋃
i=1

Ai

(X)(α,β). Proof. From Proposition 4.6, 4.8 and

865

Definition 3.4, 3.8, we can obtain that 866

PR m∑
i=1

Ai

(X)(α,β) ⊆ RAi (X)(α,β) ⊆ OR m∑
i=1

Ai

(X)(α,β) 867

⊆ R m⋃
i=1

Ai

(X)(α,β) 868

and 869

PR m∑
i=1

Ai

(X)(α,β) ⊇ RA(X)(α,β) ⊇ OR m∑
i=1

Ai

(X)(α,β) 870

⊇ R m⋃
i=1

Ai

(X)(α,β). 871
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Then we have872 ∣∣∣PR m∑
i=1

Ai

(X)α
∣∣∣

∣∣∣PR m∑
i=1

Ai

(X)β
∣∣∣ ≤

∣∣∣RAi (X)α
∣∣∣∣∣∣RAi (X)β
∣∣∣ ≤

∣∣∣OR m∑
i=1

Ai

(X)α
∣∣∣

∣∣∣OR m∑
i=1

Ai

(X)β
∣∣∣873

≤

∣∣∣R m⋃
i=1

Ai

(X)(α,β)

∣∣∣
∣∣∣R m⋃

i=1

Ai

(X)(α,β)

∣∣∣ .874

Thus the proposition hold. �875

Example 5.2. (Continued from Example 3.1 and 3.2)876

Let α = 0.7, β = 0.6, we can compute the optimistic877

α, β rough measure, the pessimisticα, β rough measure878

of D by A and B and compare with the α, β rough879

measure of D by A or B. It follows that880

ρO
A+B(D)(0.7,0.6) = 1 − |FRA+B(D)(0.7,0.6)|

|FRA+B(D)(0.7,0.6)|
881

= 1 − 4

9
= 5

9
,882

ρP
A+B(D)(0.7,0.6) = 1 − |SRA+B(D)(0.7,0.6)|

|SRA+B(D)(0.7,0.6)|
883

= 1 − 3

10
= 3

10
,884

ρA(D)(0.7,0.6) = 1 − |RA(D)(0.7,0.6)|
|RA(D)(0.7,0.6)|

= 1 − 4

10
885

= 6

10
,886

ρB(D)(0.7,0.6) = 1 − |RB(D)(0.7,0.6)|
|RB(D)(0.7,0.6)|

= 1 − 3

9
887

= 6

9
,888

ρA∪B(D)(0.7,0.6) = 1 − |RA∪B(D)(0.7,0.6)|
|RA∪B(D)(0.7,0.6)|

= 1 − 4

9
889

= 5

9
.890

Clearly, we have891

ρP
A+B(D)(0.7,0.6) ≥ ρA(D)(0.7,0.6) ≥ ρO

A+B(D)(0.7,0.6)892

≥ ρA∪B(D)(0.7,0.6)893

and894

ρP
A+B(D)(0.7,0.6) ≥ ρB(D)(0.7,0.6) ≥ ρO

A+B(D)(0.7,0.6)895

≥ ρA∪B(D)(0.7,0.6).896

6. Conclusions 897

In this paper, we combined multi-granulation rough 898

sets theory and fuzzy sets theory in order to dealing 899

with problems of uncertainty and imprecision easily. 900

The theory of fuzzy set mainly focuses on the fuzzi- 901

ness of knowledge while the theory of rough set on 902

the roughness of knowledge. Because of the comple- 903

ment of the two types of theory, fuzzy rough set models 904

are investigated to solve practical problem. Besides, 905

multi-granulation rough sets models have been pro- 906

posed by Professor Qian which also are studied from 907

the perspective of granular computing. The contribu- 908

tion of this paper have constructed two different types 909

of multi-granulation fuzzy rough set associated with 910

granular computing, in which the approximation opera- 911

tors are defined based on multiple equivalence relations. 912

What’s more, we make conclusions that rough sets, 913

fuzzy rough set models and multi-granulation rough 914

set models are special cases of the two types of multi- 915

granulation fuzzy rough set by analyzing the definitions 916

of them. More properties of the two types of fuzzy 917

rough set are discussed and comparison are made with 918

single-granulation fuzzy rough set(SGFRS). Finally, 919

we make a description of the accuracy of a set by defin- 920

ing the rough measure and (α, β)-rough measure and 921

discussing the corresponding properties. The construc- 922

tion of the new types of fuzzy rough set models is an 923

extension in view of granular computing and is mean- 924

ingful compared with the generalization of rough set 925

theory. 926
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